LITEON

LITE-ON TECHNOLOGY CORP.

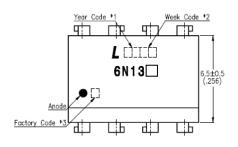
Property of Lite-on Only

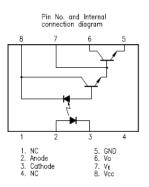
6N138/6N139 – High Speed Darlington Optocouplers FEATURES

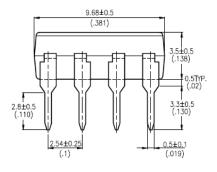
Aug 2008

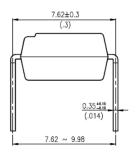
- * High current transfer ratio 2000% typical
- * Low input current requirements 0.5mA
- * High output current 60mA
- * CTR guarantee $0 \sim 70^{\circ}$ C
- * Instantaneous common mode rejection— 10KV/µs
- * TTL compatible output 0.1V V_{OL} typical
- * UL, CSA, IEC/EN/DIN EN60747-5-2 Pending
- * Dual-in-line package 6N138 / 6N139
- * Wide lead spacing package 6N138M / 6N139M
- * Surface mounting package 6N138S / 6N139S
- * Tape and reel packaging 6N138S-TA / 6N139S-TA, 6N138S-TA1 / 6N139S-TA1

APPLICATIONS

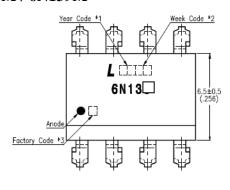

- * Digital logic ground isolation
- * Low input current line receiver
- * Telephone ring detector
- * EIA-RS-232C line receiver
- * Current loop receiver
- * High common mode noise line receiver

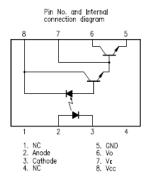

Part No.: 6N138 / 6N139 Series (Preliminary Date Sheet) Page: 1 of 10

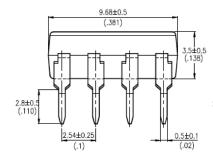

Property of Lite-on Only


OUTLINE DIMENSIONS

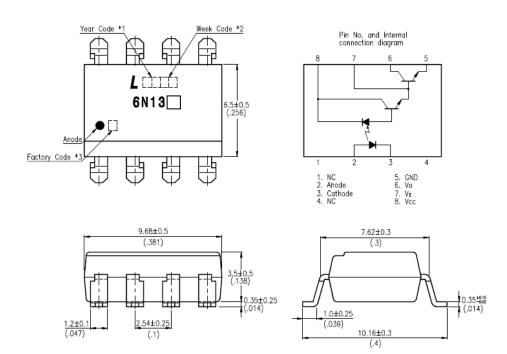
6N138 / 6N139







6N138M / 6N139M


- *1. Year date code.
- *2. 2-digit work week.
- *3. Factory identification mark shall be marked (Z : Taiwan, Y : Thailand).

Part No.: 6N138 / 6N139 Series (Preliminary Date Sheet)

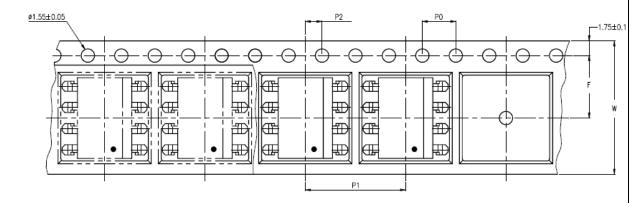
Page: 2 of 10

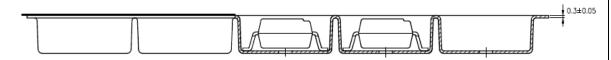
OUTLINE DIMENSIONS

6N138S / 6N139S

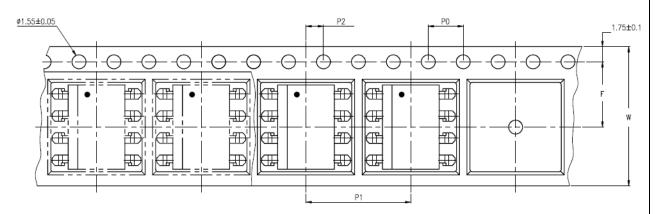
- *1. Year date code.
- *2. 2-digit work week.
- *3. Factory identification mark shall be marked (Z : Taiwan, Y : Thailand).

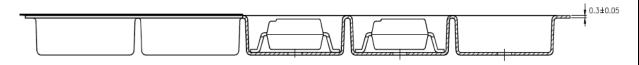
Part No.: 6N138 / 6N139 Series (Preliminary Date Sheet) Page: 3 of 10


LITEON


LITE-ON TECHNOLOGY CORP.

Property of Lite-on Only


TAPING DIMENSIONS


6N138S-TA / 6N139S-TA

6N138S-TA1 / 6N139S-TA1

Description	Symbol	Dimensions in mm (inches)
Tape wide	W	16 ± 0.3 (.63)
Pitch of sprocket holes	P ₀	4 ± 0.1 (.15)
Distance of compartment	F	$7.5 \pm 0.1 (.295)$
Distance of compartment	P ₂	$2 \pm 0.1 (.079)$
Distance of compartment to compartment	P ₁	$12 \pm 0.1 \; (\; .472 \;)$

4 of 10

Page:

Part No.: 6N138 / 6N139 Series (Preliminary Date Sheet)

DVG OD G101/1.1

Property of Lite-on Only

ABSOLUTE MAXIMUM RATING

 $(Ta = 25^{\circ}C)$

		PARAMETER	SYMBOL	RATING	UNIT	
		Forward Current	IF	20	mA	
INP	UT	Reverse Voltage		V _R	5	V
		Power Dissipation	P	35	mW	
		Supply Voltage Output Voltage	6N138	V _{CC} , V _O	-0.5 ~ +7	V
		Supply Voltage, Output Voltage	6N139	Vcc, Vo	-0.5 ~ +18	V
OUTI	PUT	Emitter-base Reverse Withstand Vo (pin 5 to 7)	V_{EBO}	0.5	V	
		Average Output Current		I_{O}	60	mA
		Power Dissipation		Po	100	mW
1 I	Isolati	on Voltage		V _{iso}	5000	Vrms
(Opera	ting Temperature	$T_{ m opr}$	-40 ~ +85	°C	
5	Storag	e Temperature	T_{stg}	-55 ~ +125	°C	
2 5	Solder	ring Temperature	$T_{\rm sol}$	260	°C	

Notes:

1. AC For 1 Minute, R.H. = $40 \sim 60\%$

Isolation voltage shall be measured using the following method.

- (1) Short between anode and cathode on the primary side and between collector and emitter on the secondary side.
- (2) The isolation voltage tester with zero-cross circuit shall be used.
- (3) The waveform of applied voltage shall be a sine wave.
- 2. For 10 Seconds

Part No.: 6N138	8 / 6N139 Series (Preliminary Date Sheet)	Page:	5 of 10	
-----------------	---	-------	---------	--

Property of Lite-on Only

ELECTRICAL - OPTICAL CHARACTERISTICS

($T_A = 25$ °C, unless otherwise specified)

	D. D. C.	GET 57 0 -	· ·		<u> </u>		GOVERNOVA	
PARAMETER		SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS	
	Input Forward Voltage		V_{F}		1.1	1.7	V	Ta=25°C, IF=1.6mA
	Input Forward Voltage Temperatu	re Coefficient	$\Delta V_F / \Delta Ta$		-1.9	_	mV/°C	IF=1.6mA
	Input Reverse Voltage		BV_R	5.0		_	V	Ta=25°C, IR=10 μ A
	Input Capacitance		C _{IN}	_	60	_	pF	V _F =0, f=1MHz
		CN120		400	2000	_		I _F =0.5mA, Vo=0.4V, V _{CC} =4.5V
3 4	Current Transfer Ratio	6N139	CTR	500	1600	_	%	I _F =1.6mA,Vo=0.4V, V _{CC} =4.5V
		6N138		300	1600	_		
	Logic Low (0) Output Voltage	6N139	$V_{ m OL}$				V	I_F =0.5mA, I_O =2mA , V_{CC} =4.5V
					0.1			I _F =1.6mA, I _O =8mA , V _{CC} =4.5V
4						0.4		I _F =5mA, I _O =15mA, V _{CC} =4.5V
					0.2			I _F =12mA, I _O =24mA, V _{CC} =4.5V
		6N138			0.1			I_F =1.6mA, I_O =4.8mA , V_{CC} =4.5V
4	Logic High (1) Output Current -	6N139	- I _{OH}	_	0.05	250	μA	I _F =0, V _{CC} =Vo=18V
7		6N138			0.1	100		$I_F=0, V_{CC}=Vo=7V$
4	Logic Low (0) Supply Current		I _{CCL}	_	0.4	1.5	mA	IF=1.6mA, V _{CC} =18V Vo=open
4	Logic High (1) Supply Current		I_{CCH}	_	0.01	10	μА	I _F =0, V _{CC} =18V, Vo= open

** All typical at $T_A = 25^{\circ}C$

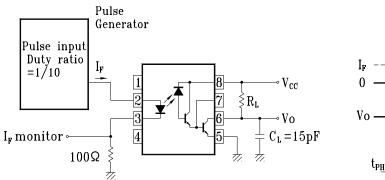
Part No.: 6N138 / 6N139 Series (Preliminary Date Sheet) Page: 6 of 10

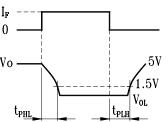
Property of Lite-on Only

SWITCHING SPECIFICATIONS (AC)

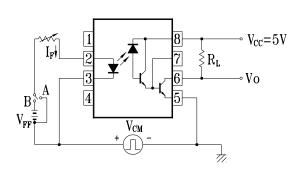
($T_A = 0 \sim 70$ °C, $V_{CC} = 5V$, unless otherwise specified)

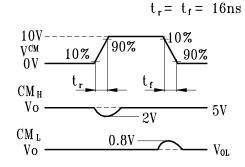
	PARAMETER		SYM. MIN.		TYP.	MAX.		UNIT	CONDITIONS				
		T _A =25°C											
	Propagation Delay time to Logic Low Output (1)→(0)	6N139		_	5	25	30		$IF = 0.5mA,$ $R_L = 4.7k \Omega$				
4			t_{PHL}		0.1	1	2	μs	$IF = 12mA,$ $R_L = 270 \Omega$				
		6N138		_	1.6	10	15	1	$IF = 1.6mA,$ $R_L = 2.2k\Omega$				
	Propagation Delay time to Logic High Output (0)→(1)	6N139 6N138	t _{PLH}	_	18	60	90	us	$IF = 0.5mA,$ $R_L = 4.7k\Omega$				
4					2	7	10		$IF = 12mA,$ $R_L = 270 \Omega$				
			6N138	6N138	6N138				3		10	35	50
5	Instantaneous common moderejection at high logic output		CM _H	1000	10000			V/μs	$ \begin{array}{c} I_{F}\!\!=\!\!0, \\ \mid V_{CM} \mid =\!\! 10V_{P\text{-}P}, \\ RL\!\!=\!\! 2.2k\Omega \end{array} $				
5	Instantaneous common mode rejection at low logic output		CM _L	1000	10000	_		V/μs	$ \begin{array}{c c} I_{F}=1.6mA \\ \mid V_{CM} \mid =10_{P-P}, \\ RL=2.2k\Omega \end{array} $				


^{**} All typical at $T_A = 25^{\circ}C$


Part No.: 6N138 / 6N139 Series (Preliminary Date Sheet) Page: 7 of 10

Property of Lite-on Only


SWITCHING TEST CIRCUITS (AC)


Switching Time Test Circuit

Common Mode Immunity Test Circuit

Property of Lite-on Only

ISOLATION CHARACTERISTICS

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
6 Isolation Resistance (Input-output)	$R_{\text{I-O}}$	_	10 ¹²	_		Ta=25°C, RH<45%, V _{I-O} =500V DC
6 Capacitance (Input-output)	$C_{\text{I-O}}$	_	0.6	_	pF	f=1MHz

^{**} All typical at $T_A = 25^{\circ}C$

Notes.

1. AC For 1 Minute, R.H. = $40 \sim 60\%$

Isolation voltage shall be measured using the following method.

- (1) Short between anode and cathode on the primary side and between collector and emitter on the secondary side.
- (2) The isolation voltage tester with zero-cross circuit shall be used.
- (3) The waveform of applied voltage shall be a sine wave.
- 2. For 10 Seconds
- 3. Current Transfer Ratio (CTR) is defined as the ration of output collector current, Io, to the forward LED input current, IF, times 100%.
- 4. Pin 7 open.
- 5. Instantaneous common mode rejection voltage "output (1)" represents a common mode voltage variation that can hold the output above (1) level (Vo>2.0V). Instantaneous common mode rejection voltage "output (0)" represents a common mode voltage variation that can hold the output above (0) level (Vo<0.8V).
- 6. Device considered a two terminal device. Pins 1, 2, 3 and 4 shorted together and Pins 5, 6, 7 and 8 shorted together.

9 of 10

Page:

Part No.: 6N138 / 6N139 Series (Preliminary Date Sheet)

BNS-OD-C131/A4

LITEON

LITE-ON TECHNOLOGY CORP.

Property of Lite-on Only

Notes:

- Lite-On is continually improving the quality, reliability, function or design and Lite-On reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio / visual equipment, electrical application and instrumentation.
- For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales in advice.
- If there are any questions about the contents of this publication, please contact us at your convenience.
- The contents described herein are subject to change without prior notice.
- Do not immerse unit's body in solder paste.

Part No.: 6N138 / 6N139 Series (Preliminary Date Sheet) Page: 10 of 10